
CHAPTER FOUR

LADDER PROGRAMMING

This chapter is an introduction to programming a PLC using ladder diagrams.

Ladder Diagrams

As an introduction to ladder diagrams, consider
the simple wiring diagram for an electrical

circuit in the figure.

We can redraw this diagram in a different way,
using two vertical lines to represent the input

power rails and stringing the rest of the circuit

between them. The result is a circuit termed

ladder diagram.

The power lines, or rails, as they are often called, are like the vertical sides
of a ladder, with the horizontal circuit lines similar to the rungs of the

ladder.

 PLC Ladder Programming (LAD)

A very commonly used method of programming PLCs is based on the use
of ladder diagrams.

 In drawing a ladder diagram, certain conventions are adopted:

 The vertical lines of the diagram represent the power rails between which

circuits are connected. The power flow is taken to be from the left-

hand vertical across a rung.

 Each rung on the ladder defines one
operation in the control process.

 A ladder diagram is read from left to right

and from top to bottom. The figure shows

the scanning motion employed by the PLC.

 When the PLC is in its run mode, it goes
through the entire ladder program to the end,

the end rung of the program might be

indicated by a block with the word END or

RET to return the program to its beginning.

 Each rung must start with an input or inputs and must end with at least
one output.

 As the program is scanned, the outputs are not updated instantly, but the
results stored in memory and all the outputs are updated simultan-

eously at the end of the program scan.

 Electrical devices are shown in their normal condition. Thus a switch that

is normally open until some object closes it is shown as open on the ladder

diagram.

 A particular device can appear in more than one rung of a ladder.

For example, we might have a relay that switches on one or more devices.

The same letters and/or numbers are used to label the device in each

situation.

 The figure shows standard IEC 1131-3 symbols that are used for input
and output devices.

To illustrate the drawing of the rung of a ladder diagram, consider a situation
where energizing an output device, such as a motor, depends on a normally

open start switch. When the switch is closed, that is, there is an input, the

output of the motor is activated.

With a normally closed switch |/| there will be an output until that switch
was opened. The output will be off when the input is activated.

In drawing ladder diagrams, the names of the associated variable and

addresses of each element are appended to its symbol. Thus the next figure

shows how the ladder diagram of previous example would appear using (a)

Mitsubishi, (b) Siemens, (c) Allen-Bradley, and (d) Telemecanique

notations for the addresses.

Logic Functions

There are many control situations requiring actions to be initiated when
a certain combination of conditions is realized.

1- AND

An output is not energized unless two normally
open switches A and B are both closed.

Logic gate symbol Truth table Ladder diagram

“On a ladder diagram, contacts in a horizontal rung, that is,
contacts in series, represent the logical AND operations.”

Electrical circuit

American

International

2- OR

An output is energized when switch A, B or, both are closed.

Electrical circuit
Truth table

Logic gate symbol

Ladder diagram

“Paths in parallel, represent logical OR operations.”

3- NOT

There is an output when there is no input and no output when there is an
input. The gate is sometimes referred to as an inverter.

Electrical circuit
Truth table

Logic gate symbol

Ladder diagram

4- NAND

NAND gate is an AND gate followed by a NOT gate. The consequence of
having the NOT gate is to invert all the outputs from the AND gate. Either

input A or input B (or both) have to be 0 for there to be a 1 output.

When both inputs A and input B are 1, the output is 0.

An alternative that gives exactly the same result is to put a NOT gate on
each input and then follow that with an OR gate.

Logic gate

symbol Truth table

Ladder diagram

5- NOR

NOR gate is an OR gate followed by a NOT gate. The consequence of having
the NOT gate is to invert the outputs of the OR gate. There is an output

when neither input A nor input B is 1.

An alternative, which gives exactly the same results, is to put a NOT gate
on each input and then an AND gate.

Logic gate

symbol Truth table

Ladder diagram

6- Exclusive OR (XOR)

The OR gate gives an output when either or both of the inputs are 1.
However, sometimes there is a need for a gate that gives an output when

either of the inputs is 1 but not when both are 1.

Logic gate

symbol Truth table

Ladder diagram

One way of obtaining such a gate is by using NOT, AND, and OR gates as
shown in figure.

Latching

There are often situations in which it is necessary to hold an output
energized, even when the input ceases. The term latch circuit is used

for the circuit that carries out such an operation.

An example of a latch circuit is shown in figure. When the input A contacts
close, there is an output. However, when there is an output, another set of

contacts associated with the output closes. These contacts form an OR

logic gate system with the input contacts. Thus, even if input A opens, the

circuit will still maintain the output energized. The only way to release the

output is by operating the normally closed contact B.

As an illustration of the application of a
latching circuit, consider a motor

controlled by stop and start push-button

switches and for which one signal light

must be illuminated when the power is

applied to the motor and another when
it is not applied.

X401 is closed when the program is started.
When X400 is momentarily closed, Y430 is

energized and its contacts close. This results

in latching as well as the switching off of

Y431 and the switching on of Y432. To

switch the motor off, X401 is pressed and
opens. Y430 contacts open in the top rung

and third rung but close in the second rung.

Thus Y431 comes on and Y432 goes off

Multiple Outputs

With ladder diagrams, there can be more than one output connected to a

contact. The figure shows a ladder program with two output coils. When the

input contacts close, both the coils give outputs.

For the ladder rung shown in the figure, output A occurs when input A
occurs. Output B occurs only when both input A and input B occur.

Example

A signal lamp is required to be switched on if a pump is running and the
pressure is satisfactory, or if the lamp test switch is closed.

Other Programming Languages

Other languages that are less popular include instruction list (IL),
sequential function chart (SFC), and structured text (ST).

instruction list (IL),

sequential function chart (SFC),

structured text
(ST).

Boolean Algebra

Ladder programs can be derived from Boolean expressions since we are
concerned with a mathematical system of logic.

In Boolean algebra there are just two digits, 0 and 1. When we have an
AND operation for inputs A and B, we can write:

The OR operation for inputs A and B is written as:

The NOT operation for an input A is written as:

As an illustration of how we can relate Boolean expressions with ladder
diagrams, consider the expression:

The figure shows the ladder diagram and the corresponding logic circuit.

Consider a logic diagram with many inputs, as shown in figure below.

Its representation by a Boolean expression and a ladder rung.

21

Axioms

The axioms (or postulates) of a mathematical system are a minimal set of
basic definitions that we assume to be true, from which all other

information about the system can be derived. The next table lists the

Boolean algebra axioms.

(A1) 1 + 1 = 1 (A1) 0  0 = 0

(A2) 0 + 0 = 0 (A2) 1  1 = 1

(A3) 1 + 0 = 0 + 1 = 1 (A3) 0  1 = 1  0 = 0

Single-variable Theorems

During the analysis or synthesis of logic circuits, we often write algebraic
expressions that characterize a circuit’s actual or desired behavior. Boolean
algebra theorems are statements that allow us to manipulate algebraic

expressions to get simpler ones. For example, the theorem X + 0 = X

allows us to substitute every occurrence of X + 0 in an expression with X.

The next table lists Boolean algebra theorems involving a single variable
X. Try to prove it yourself.

Table 1

22

(T1) X + 0 = X (T1) X  1 = X

(T2) X + 1 = 1 (T2) X  0 = 0

(T3) X + X = X (T3) X  X = X

(T4) X + X' = 1 (T4) X  X' = 0

(T5) (X')' = X

Two- And Three Variable Theorems

Boolean algebra theorems with two or three variables are listed in the next
table. Each of these theorems is easily proved by evaluating the theorem

statement for the four possible combinations of X and Y, or the eight

possible combinations of X, Y, and Z.

Commutative Laws (T6) A + B = B + A (T6) A  B = B  A

Associative Laws (T7) A + (B + C) = (A + B) + C (T7) A  (B  C) = (A  B)  C

Distributive Laws (T8) A  (B + C) = A  B + A  C (T8) A + B  C = (A + B)  (A + C)

DeMorgan's Laws (T9) (A + B)' = A'  B' (T9) (A  B)' = A' + B'

Absorption Laws (T10) X + X  Y = X (T10) X  (X + Y) = X

Combining (T11) X  Y + X  Y' = X (T11) (X + Y)  (X + Y') = X

Table 2

Table 3

23

The first two theorem pairs (T6, T6) and (T7, T7) concern commutativity

and associativity of logical addition and multiplication and are identical to

the commutative and associative laws for addition and multiplication of

integers and reals. Taken together, they indicate that the parenthesization

or order of terms in a logical sum or logical product is irrelevant.

Theorem T8 is identical to the distributive law for integers and reals—that
is, logical multiplication distributes over logical addition. Hence, we can

“multiply out” an expression to obtain a sum-of-products form, as in the

example below:

 V(W + X)(Y + Z) = VWY + VWZ + VXY + VXZ

However, Boolean algebra also has the unfamiliar property that the reverse

is true—logical addition distributes over logical multiplication as

demonstrated by theorem T8'. Thus, we can also “add out” an expression to
obtain a product of-sums form:

 (VWX) + (YZ) = (V + Y)(V + Z)(W + Y)(W + Z)(X + Y)(X + Z)

24

DeMorgan’s Laws (T9 and T9) are probably the most commonly used of

all the theorems of Boolean algebra. These theorems apply to any number

of inputs. Theorem T9 simply says that an n-input AND gate whose

output is inverted is equivalent to an n-input OR gate whose inputs are

inverted. That is, the circuits of the figure (a) and (b) or (c) and (d) are

equivalent.

Equivalent to Equivalent to

Equivalent circuits according to DeMorgan’s theorem T9.

Theorems (T10, T10) and (T11, T11) are used extensively in the minimi-

zation of logic functions. For example, if the subexpression X + XY

appears in a logic expression, the absorption theorem T10 says that we

need only include X in the expression.

25

Order Of Operation

The order of priority in Boolean expression is NOT first, AND second, and
OR last, unless otherwise indicated by grouping signs, such as parentheses,

brackets, or braces. According to these rules, in the expression A + B  C, B

is ANDed with C first then the result is ORed with A.

Duality

We stated all of the axioms of Boolean algebra in pairs (e.g., (A1) and (A1)).
The primed version () of each axiom is obtained from the unprimed version

by simply swapping (0) and (1) and, if present, () and (+). As a result, we can

state the following metatheorem, a theorem about theorems:

Principle of Duality Any theorem in Boolean algebra remains true if
(0) and (1) are swapped and () and (+) are swapped throughout.

The foregoing axioms and theorems of the Boolean algebra are used in
analysis and synthesis of digital circuits. It can be also used to simplify the

logic expressions. The following example illustrates this:

26

Examples

Simplify the following Boolean functions to a minimum number of literals.

 1. Z = X + XY

 Ans.

 Z = X1 + XY

 = X(1+ Y)
 = X1

 = X

2. Z = X(X + Y)

Ans.
 Z = XX + XY

 = 0 + XY

 = XY

3. W = XYZ + XYZ + XY
Ans.

 W = XZ(Y + Y) + XY
 = XZ + XY

27

4. W = XY + XZ + YZ
Ans.

 W = XY + XZ + YZ(X + X)
 = XY + XZ + XYZ + XYZ

 = XY(1 + Z) + XZ(1 + Y)

 = XY + XZ

5. Z = X + XY

Ans.

 Z = (X + X)(X + Y)

 = 1(X + Y)

 = X + Y

28

Standard Representations of Logic Functions

The most basic representation of a logic function is the truth table. This
representation simply lists the output of the circuit for every possible

input combination. Traditionally, the input combinations are arranged in

rows in ascending binary counting order, and the corresponding output

values are written in a column next to the rows. The general structure of a

3-variable truth table is shown in table below.

Row X Y Z F

0 0 0 0 F(0,0,0)

1 0 0 1 F(0,0,1)

2 0 1 0 F(0,1,0)

3 0 1 1 F(0,1,1)

4 1 0 0 F(1,0,0)

5 1 0 1 F(1,0,1)

6 1 1 0 F(1,1,0)

7 1 1 1 F(1,1,1)

1. Truth table

Table 4 General truth table structure

for a 3-varible logic function, F(X,Y,Z)

29

Row X Y Z F

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

Table 5 Truth table for a particular

3-varible logic function, F(X,Y,Z)

The rows are numbered 0–7
corresponding to the binary input

combinations, but this numbering is not

an essential part of the truth table. The

truth table for a particular 3-variable

logic function is shown in table 5. Each
distinct pattern of 0s and 1s in the

output column yields a different logic

function; there are 28 such patterns.

Thus, the logic function shown in the

table is one of 28 different logic
functions of three variables.

The truth table for an n-variable logic function has 2n rows. Obviously,
truth tables are practical to write only for logic functions with a small

number of variables.

The information contained in a truth table can also be conveyed

algebraically. To do so, we first need some definitions:

 A literal is a variable or the complement of a variable. Examples: X, Y, X, Y.

 A product term is a single literal or a logical product of two or more literals.

Examples: Z, WXY, XYZ, WYZ.

30

 A sum-of-products expression is a logical sum of product terms. Example:

 ZWXY XYZ WYZ.

 A sum term is a single literal or a logical sum of two or more literals. Examples: Z,
W X Y, X YZ, WYZ.

 A product-of-sums expression is a logical product of sum terms. Example:

 Z(W X Y)(X YZ)(WYZ).

 A normal term is a product or sum term in which no variable appears more than

once. A nonnormal term can always be simplified to a constant or a normal term

using one of Boolean algebra theorems. Examples of nonnormal terms: WXXY,
W + W + X+ Y, XXY. Examples of normal terms: WXY, W XY.

 An n-variable minterm is a normal product term with n literals. There are 2n such

product terms. Examples of 4-variable minterms: WXYZ, WXYZ, WXYZ.

 An n-variable maxterm is a normal sum term with n literals. There are 2n such sum

terms. Examples of 4-variable maxterms: W+ X+ Y+ Z, W + X+ Y+ Z, W+

X+ Y + Z.

31

There is a close correspondence between the truth table and minterms and
maxterms. A minterm can be defined as a product term that is 1 in exactly

one row of the truth table. Similarly, a maxterm can be defined as a sum

term that is 0 in exactly one row of the truth table. The next table shows

this correspondence for a 3-variable truth table.

Row X Y Z F Minterm Maxterm

0 0 0 0 F(0,0,0) XYZ X + Y Z

1 0 0 1 F(0,0,1) XYZ X + Y Z

2 0 1 0 F(0,1,0) XYZ X + Y Z

3 0 1 1 F(0,1,1) XYZ X + Y Z

4 1 0 0 F(1,0,0) XYZ X + Y Z

5 1 0 1 F(1,0,1) XYZ X + Y Z

6 1 1 0 F(1,1,0) XYZ X + Y Z

7 1 1 1 F(1,1,1) XYZ X + Y Z

An n-variable minterm can be represented by an n-bit integer, the minterm

number. We’ll use the name minterm i to denote the minterm corresponding to

row i of the truth table. In minterm i, a particular variable appears inverted (
if the corresponding bit in the binary representation of i is 0; otherwise, it is not

Table 6

32

inverted. For example, row 5 has binary representation 101 and the corresponding

minterm is XYZ. As you might expect, the correspondence for maxterms is just

the opposite: in maxterm i, a variable appears inverted if the corresponding bit in

the binary representation of i is 1. Thus, maxterm 5 (101) is XY Z.

Based on the correspondence between the truth table and minterms, we

can easily create an algebraic representation of a logic function from its

truth table. The canonical sum of a logic function is a sum of the

minterms corresponding to truth-table rows (input combinations) for

which the function produces a 1 output. For example, the canonical sum

for the logic function in Table 5 is

F = X,Y,Z(0,3,4,6,7) = XYZ + XYZ + XYZ + XYZ+ XYZ

Here, the notation X,Y,Z(0,3,4,6,7) is a minterm list and means “the sum
of minterms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list

is also known as the on-set for the logic function. You can visualize that

each minterm turns on the output for exactly one input combination. Any

logic function can be written as a canonical sum.

33

The canonical product of a logic function is a product of the maxterms

corresponding to input combinations for which the function produces a 0

output. For example, the canonical product for the logic function in Table 5 is

F = X,Y,Z(1,2,5) = (X + Y Z(X + Y Z)(X + Y Z)

Here, the notation X,Y,Z(1,2,5) is a maxterm list and means “the product
of maxterms 1, 2, and 5 with variables X, Y, and Z.” The maxterm list is

also known as the off-set for the logic function. You can visualize that each

maxterm turns off the output for exactly one input combination. Any logic

function can be written as a canonical product.

It’s easy to convert between a minterm list and a maxterm list. For
a function of n variables, the possible minterm and maxterm numbers

are in the set {0, 1,, 2n-1}; a minterm or maxterm list contains a subset

of these numbers. To switch between list types, take the set complement,

for example,

A,B,C(0,1,2,3) = A,B,C(4,5,6,7)

 X,Y(1) = X,Y(0,2,3)

 W,X,Y,Z(0,1,2,3,5,7,11,13) =  W,X,Y,Z(4,6,8,9,10,12,14,15)

34

We have now learned five possible representations for a logic function:

1. A truth table.

2. An algebraic sum of minterms, the canonical sum.

3. A minterm list using the S notation.

4. An algebraic product of maxterms, the canonical product.

5. A maxterm list using the P notation.

Each one of these representations specifies exactly the same information;

given any one of them, we can derive the other four.

More often, we describe a logic function using the English-language connectives

“and,” “or,” and “not.” For example, we might describe an alarm circuit by saying,

“The ALARM output is 1 if the PANIC input is 1, or if the ENABLE input is 1, the

EXITING input is 0, and the house is not secure; the house is secure if the WINDOW,

DOOR, and GARAGE inputs are all 1.” Such a description can be translated directly

into algebraic expressions:

 ALARM =PANIC +ENABLE EXITING SECURE
 SECURE =WINDOW DOOR GARAGE

 ALARM =PANIC +ENABLE EXITING (WINDOW DOOR GARAGE)

35

We can easily draw a circuit using AND, OR, and NOT gates that realizes
the final expression, as shown in figure below.

36

Logic Circuit Analysis

We analyze a logic circuit by obtaining a formal description of its logic
function. Once we have a description of the logic function, a number of

other operations are possible:

 We can determine the behavior of the circuit for various input

combinations.

 We can manipulate an algebraic description to suggest different circuit
structures for the logic function.

 We can use an algebraic description of the circuit’s functional behavior

in the analysis of a larger system that includes the circuit.

Given a logic diagram for a circuit, such as in the shown figure, there are
a number of ways to obtain a formal description of the circuit’s function.
The most primitive functional description is the truth table.

37

Using only the basic axioms of Boolean algebra, we can obtain the truth table
of an n-input circuit by working our way through all 2n input combinations.

For each input combination, we determine all of the gate outputs produced by

that input, propagating information from the circuit inputs to the circuit

outputs. The figure below applies this “exhaustive” technique to our example
circuit. Written on each signal line in the circuit is a sequence of eight logic
values.

The truth table can be written by transcribing

the output sequence of the final OR gate, as

shown in the next table. Once we have the

truth table for the circuit, we can also

directly write a logic expression—the

canonical sum or product—if we wish.

Row X Y Z F

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

38

The number of input combinations of a logic circuit grows exponentially with

the number of inputs, 2n, so the exhaustive approach can quickly become

exhausting. Instead, we normally use an algebraic approach whose complexity

is more linearly proportional to the size of the circuit. The method is simple—
we build up a parenthesized logic expression corresponding to the logic

operators and structure of the circuit. We start at the circuit inputs and

propagate expressions through gates toward the output. Using the theorems

of Boolean algebra, we may simplify the expressions as we go, or we may defer

all algebraic manipulations until an output expression is obtained.

F = ((X + Y)Z) + (XYZ)

The figure above applies the algebraic technique to our example circuit.
The output function is given on the output of the final OR gate:

39

No Boolean-algebra theorems were used in obtaining this expression.

However, we can use theorems to transform this expression into another

form. For example, a sum of products can be obtained by “multiplying

out” (using theorem T8) :
F = XZ + YZ + XYZ

The new expression corresponds to a different circuit for the same logic
function, as shown in figure below.

Similarly, we can “add out” (using theorem T8) the original expression to obtain a

product of sums:

F = ((X + Y)Z) + (XYZ)
 = (X + Y + X)(X + Y + Y)(X + Y + Z)(Z + X)(Z + Y)(Z + Z)
 = 1  1  (X + Y + Z)(X + Z)(Y + Z)  1
 = (X + Y + Z)(X + Z)(Y + Z)

40

The corresponding logic circuit is shown in figure below. Note that the circuits
that synthesized from sum of product logic expressions are often called

AND-OR circuits, while those which are synthesized from product of sum

logic expressions are called OR-AND circuits.

