
CHAPTER FOUR 

 

LADDER PROGRAMMING 

This chapter is an introduction to programming a PLC using ladder diagrams. 



Ladder Diagrams 

As an introduction to ladder diagrams, consider 
the simple wiring diagram for an electrical 

circuit in the figure. 

We can redraw this diagram in a different way, 
using two vertical lines to represent the input 

power rails and stringing the rest of the circuit 

between them. The result is a circuit termed 

ladder diagram. 

The power lines, or rails, as they are often called, are like the vertical sides 
of a ladder, with the horizontal circuit lines similar to the rungs of the 

ladder. 



  PLC Ladder Programming (LAD) 

A very commonly used method of programming PLCs is based on the use 
of ladder diagrams. 

 In drawing a ladder diagram, certain conventions are adopted: 

 The vertical lines of the diagram represent the power rails between which 

circuits are connected. The power flow is taken to be from the left-

hand vertical across a rung. 

 Each rung on the ladder defines one 
operation in the control process. 

 A ladder diagram is read from left to right 

and from top to bottom. The figure shows 

the scanning motion employed by the PLC. 

 When the PLC is in its run mode, it goes 
through the entire ladder program to the end, 

the end rung of the program might be 

indicated by a block with the word END or 

RET to return the program to its beginning. 

 Each rung must start with an input or inputs and must end with at least 
one output. 



 As the program is scanned, the outputs are not updated instantly, but the 
results stored in memory and all the outputs are updated simultan-

eously at the end of the program scan. 

 Electrical devices are shown in their normal condition. Thus a switch that 

is normally open until some object closes it is shown as open on the ladder 

diagram. 

 A particular device can appear in more than one rung of a ladder. 

For example, we might have a relay that switches on one or more devices. 

The same letters and/or numbers are used to label the device in each 

situation. 

 The figure shows standard IEC 1131-3 symbols that are used for input 
and output devices. 



To illustrate the drawing of the rung of a ladder diagram, consider a situation 
where energizing an output device, such as a motor, depends on a normally 

open start switch. When the switch is closed, that is, there is an input, the 

output of the motor is activated. 

With a normally closed switch |/| there will be an output until that switch 
was opened. The output will be off when the input is activated. 



In drawing ladder diagrams, the names of the associated variable and 

addresses of each element are appended to its symbol. Thus the next figure 

shows how the ladder diagram of previous example would appear using (a) 

Mitsubishi, (b) Siemens, (c) Allen-Bradley, and (d) Telemecanique 

notations for the addresses. 



Logic Functions  

There are many control situations requiring actions to be initiated when 
a certain combination of conditions is realized. 

1- AND  

An output is not energized unless two normally 
open switches A and B are both closed.  

Logic gate symbol  Truth table Ladder diagram 

“On a ladder diagram, contacts in a horizontal rung, that is, 
contacts in series, represent the logical AND operations.” 

Electrical circuit 

American 

International 



2- OR  

An output is energized when switch A, B or, both are closed. 

Electrical circuit 
Truth table 

Logic gate symbol  

Ladder diagram 

“Paths in parallel, represent logical OR operations.” 



3- NOT  

There is an output when there is no input and no output when there is an 
input. The gate is sometimes referred to as an inverter. 

Electrical circuit 
Truth table 

Logic gate symbol  

Ladder diagram 



4- NAND  

NAND gate is  an AND gate followed by a NOT gate. The consequence of 
having the NOT gate is to invert all the outputs from the AND gate. Either 

input A or input B (or both) have to be 0 for there to be a 1 output. 

When both inputs A and input B are 1, the output is 0. 

An alternative that gives exactly the same result is to put a NOT gate on 
each input and then follow that with an OR gate.  

Logic gate 

symbol  Truth table 

Ladder diagram 



5- NOR  

NOR gate is  an OR gate followed by a NOT gate. The consequence of having 
the NOT gate is to invert the outputs of the OR gate. There is an output 

when neither input A nor input B is 1. 

An alternative, which gives exactly the same results, is to put a NOT gate 
on each input and then an AND gate. 

Logic gate 

symbol  Truth table 

Ladder diagram 



6- Exclusive OR (XOR) 

The OR gate gives an output when either or both of the inputs are 1. 
However, sometimes there is a need for a gate that gives an output when 

either of the inputs is 1 but not when both are 1. 

Logic gate 

symbol  Truth table 

Ladder diagram 

One way of obtaining such a gate is by using NOT, AND, and OR gates as 
shown in figure. 



Latching 

There are often situations in which it is necessary to hold an output 
energized, even when the input ceases. The term latch circuit is used 

for the circuit that carries out such an operation. 

An example of a latch circuit is shown in figure. When the input A contacts 
close, there is an output. However, when there is an output, another set of 

contacts associated with the output closes. These contacts form an OR 

logic gate system with the input contacts. Thus, even if input A opens, the 

circuit will still maintain the output energized. The only way to release the 

output is by operating the normally closed contact B. 



As an illustration of the application of a 
latching circuit, consider a motor 

controlled by stop and start push-button 

switches and for which one signal light 

must be illuminated when the power is 

applied to the motor and another when 
it is not applied.  

X401 is closed when the program is started. 
When X400 is momentarily closed, Y430 is 

energized and its contacts close. This results 

in latching as well as the switching off of 

Y431 and the switching on of Y432. To 

switch the motor off, X401 is pressed and 
opens. Y430 contacts open in the top rung 

and third rung but close in the second rung. 

Thus Y431 comes on and Y432 goes off 



Multiple Outputs 

With ladder diagrams, there can be more than one output connected to a 

contact. The figure shows a ladder program with two output coils. When the 

input contacts close, both the coils give outputs. 

For the ladder rung shown in the figure, output A occurs when input A 
occurs. Output B occurs only when both input A and input B occur. 



Example   

A signal lamp is required to be switched on if a pump is running and the 
pressure is satisfactory, or if the lamp test switch is closed.  



Other Programming Languages 

Other languages that are less popular include instruction list (IL), 
sequential function chart (SFC), and structured text (ST). 

instruction list (IL),  

sequential function chart (SFC),  

structured text 
(ST). 



Boolean Algebra 

Ladder programs can be derived from Boolean expressions since we are 
concerned with a mathematical system of logic. 

In Boolean algebra there are just two digits, 0 and 1. When we have an 
AND operation for inputs A and B, we can write: 

The OR operation for inputs A and B is written as: 

The NOT operation for an input A is written as: 

As an illustration of how we can relate Boolean expressions with ladder 
diagrams, consider the expression: 

The figure shows the ladder diagram and the corresponding logic circuit.  



Consider a logic diagram with many inputs, as shown in figure below. 



Its representation by a Boolean expression and a ladder rung. 
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Axioms  

The axioms (or postulates) of a mathematical system are a minimal set of 
basic definitions that we assume to be true, from which all other 

information about the system can be derived. The next table lists the 

Boolean algebra axioms. 

(A1) 1 + 1 = 1 (A1) 0  0 = 0 

(A2) 0 + 0 = 0 (A2) 1  1 = 1 

(A3) 1 + 0 = 0 + 1 = 1 (A3) 0  1 = 1  0 = 0 

Single-variable Theorems 

During the analysis or synthesis of logic circuits, we often write algebraic 
expressions that characterize a circuit’s actual or desired behavior. Boolean 
algebra theorems are statements that allow us to manipulate algebraic 

expressions to get simpler ones. For example, the theorem X + 0 = X 

allows us to substitute every occurrence of X + 0 in an expression with X. 

The next table lists Boolean algebra theorems involving a single variable 
X. Try to prove it yourself. 

Table 1 
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(T1) X + 0 = X (T1) X  1 = X 

(T2) X + 1 = 1 (T2) X  0 = 0  

(T3) X + X = X (T3) X  X = X 

(T4) X + X'  = 1 (T4) X  X' = 0 

(T5) (X')'  = X 

Two- And Three Variable Theorems 

Boolean algebra theorems with two or three variables are listed in the next 
table. Each of these theorems is easily proved by evaluating the theorem 

statement for the four possible combinations of X and Y, or the eight 

possible combinations of X, Y, and Z. 

Commutative Laws (T6) A + B = B + A (T6) A  B = B  A 

Associative Laws (T7) A + (B + C) = (A + B) + C (T7) A  (B  C) = (A  B)  C 

Distributive Laws (T8) A  (B + C) = A  B + A  C (T8) A + B  C = (A + B)  (A + C) 

DeMorgan's Laws (T9) (A + B)'  = A'  B' (T9) (A  B)' = A' + B' 

Absorption Laws (T10) X + X  Y = X (T10) X  (X + Y) = X 

Combining (T11) X  Y + X  Y' = X (T11) (X + Y)  (X + Y') = X 

Table 2 

Table 3 
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The first two theorem pairs (T6, T6) and (T7, T7) concern commutativity 

and associativity of logical addition and multiplication and are identical to 

the commutative and associative laws for addition and multiplication of 

integers and reals. Taken together, they indicate that the parenthesization 

or order of terms in a logical sum or logical product is irrelevant. 

Theorem T8 is identical to the distributive law for integers and reals—that 
is,  logical multiplication distributes over logical addition. Hence, we can 

“multiply out” an expression to obtain a sum-of-products form, as in the 

example below: 

      

      V(W + X)(Y + Z) = VWY + VWZ + VXY + VXZ 
 

However, Boolean algebra also has the unfamiliar property that the reverse 

is true—logical addition distributes over logical multiplication as 

demonstrated by theorem T8'. Thus, we can also “add out” an expression to 
obtain a product of-sums form: 
  

 (VWX) + (YZ) = (V + Y)(V + Z)(W + Y)(W + Z)(X + Y)(X + Z) 
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DeMorgan’s Laws (T9 and T9) are probably the most commonly used of 

all the theorems of Boolean algebra. These theorems apply to any number 

of inputs. Theorem T9 simply says that an n-input AND gate whose 

output is inverted is equivalent to an n-input OR gate whose inputs are 

inverted. That is, the circuits of the figure (a) and (b) or (c) and (d) are 

equivalent. 

Equivalent to Equivalent to 

Equivalent circuits according to DeMorgan’s theorem T9. 

Theorems (T10, T10) and (T11, T11) are used extensively in the minimi-

zation of logic functions. For example, if the subexpression X + XY 

appears in a logic expression, the absorption theorem T10 says that we 

need only include X in the expression. 
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Order Of Operation 

The order of priority in Boolean expression is NOT first, AND second, and 
OR last, unless otherwise indicated by grouping signs, such as parentheses, 

brackets, or braces. According to these rules, in the expression A + B  C, B 

is ANDed with C first then the result is ORed with A. 

Duality 

We stated all of the axioms of Boolean algebra in pairs (e.g., (A1) and (A1)). 
The primed version () of each axiom is obtained from the unprimed version 

by simply swapping (0) and (1) and, if present, () and (+). As a result, we can 

state the following metatheorem, a theorem about theorems: 

 

Principle of Duality Any theorem in Boolean algebra remains true if 
(0) and (1) are swapped and () and (+) are swapped throughout. 

The foregoing axioms and theorems of the Boolean algebra are used in 
analysis and synthesis of digital circuits. It can be also used to simplify the 

logic expressions. The following example illustrates this: 
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Examples 

Simplify the following Boolean functions to a minimum number of literals. 
    

  1. Z = X + XY  

     Ans.   

 Z = X1 + XY  

    = X(1+ Y) 
    = X1 

    = X  

 

2. Z = X(X + Y) 

Ans.   
 Z = XX + XY 

    = 0 + XY 

    = XY 

 

3. W = XYZ + XYZ + XY 
Ans. 

 W = XZ( Y + Y) + XY 
               = XZ + XY 
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4. W = XY + XZ + YZ 
Ans. 

 W = XY + XZ + YZ(X + X) 
               = XY + XZ + XYZ + XYZ 

               = XY(1 + Z) + XZ(1 + Y) 

               = XY + XZ 

 

5. Z = X + XY  

Ans.   

  Z = (X + X)(X + Y) 

        = 1(X + Y) 

       = X + Y 
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Standard Representations of Logic Functions 

The most basic representation of a logic function is the truth table. This 
representation simply lists the output of the circuit for every possible 

input combination. Traditionally, the input combinations are arranged in 

rows in ascending binary counting order, and the corresponding output 

values are written in a column next to the rows. The general structure of a 

3-variable truth table is shown in table below. 

Row X Y Z F 

0 0 0 0 F(0,0,0) 

1 0 0 1 F(0,0,1) 

2 0 1 0 F(0,1,0) 

3 0 1 1 F(0,1,1) 

4 1 0 0 F(1,0,0) 

5 1 0 1 F(1,0,1) 

6 1 1 0 F(1,1,0) 

7 1 1 1 F(1,1,1) 

1. Truth table 

Table 4 General truth table structure 

for a 3-varible logic function, F(X,Y,Z) 
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Row X Y Z F 

0 0 0 0 1 

1 0 0 1 0 

2 0 1 0 0 

3 0 1 1 1 

4 1 0 0 1 

5 1 0 1 0 

6 1 1 0 1 

7 1 1 1 1 

Table 5 Truth table for a particular 

3-varible logic function, F(X,Y,Z) 

The rows are numbered 0–7 
corresponding to the binary input 

combinations, but this numbering is not 

an essential part of the truth table. The 

truth table for a particular 3-variable 

logic function is shown in table 5. Each 
distinct pattern of 0s and 1s in the 

output column yields a different logic 

function; there are 28 such patterns. 

Thus, the logic function shown in the 

table is one of 28 different logic 
functions of three variables. 

The truth table for an n-variable logic function has 2n rows. Obviously, 
truth tables are practical to write only for logic functions with a small 

number of variables. 

The information contained in a truth table can also be conveyed 

algebraically. To do so, we first need some definitions: 

 A literal is a variable or the complement of a variable. Examples: X, Y, X, Y. 

 A product term is a single literal or a logical product of two or more literals. 

Examples: Z, WXY, XYZ, WYZ. 
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 A sum-of-products expression is a logical sum of product terms. Example:  

 ZWXY XYZ WYZ. 

 A sum term is a single literal or a logical sum of two or more literals. Examples: Z, 
W X Y, X YZ, WYZ. 

 A product-of-sums expression is a logical product of sum terms. Example:  

 Z(W X Y)(X YZ)(WYZ). 

 A normal term is a product or sum term in which no variable appears more than 

once. A nonnormal term can always be simplified to a constant or a normal term 

using one of Boolean algebra theorems. Examples of nonnormal terms: WXXY, 
W + W + X+ Y, XXY. Examples of normal terms: WXY, W XY. 

 An n-variable minterm is a normal product term with n literals. There are 2n such 

product terms. Examples of 4-variable minterms: WXYZ, WXYZ, WXYZ. 

 An n-variable maxterm is a normal sum term with n literals. There are 2n such sum 

terms. Examples of 4-variable maxterms: W+ X+ Y+ Z, W + X+ Y+ Z, W+ 

X+ Y + Z. 
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There is a close correspondence between the truth table and minterms and 
maxterms. A minterm can be defined as a product term that is 1 in exactly 

one row of the truth table. Similarly, a maxterm can be defined as a sum 

term that is 0 in exactly one row of the truth table. The next table shows 

this correspondence for a 3-variable truth table. 

Row X Y Z F Minterm Maxterm 

0 0 0 0 F(0,0,0) XYZ X + Y Z 

1 0 0 1 F(0,0,1) XYZ X + Y Z 

2 0 1 0 F(0,1,0) XYZ X + Y Z 

3 0 1 1 F(0,1,1) XYZ X + Y Z 

4 1 0 0 F(1,0,0) XYZ X + Y Z 

5 1 0 1 F(1,0,1) XYZ X + Y Z 

6 1 1 0 F(1,1,0) XYZ X + Y Z 

7 1 1 1 F(1,1,1) XYZ X + Y Z 

An n-variable minterm can be represented by an n-bit integer, the minterm 

number. We’ll use the name minterm i to denote the minterm corresponding to 

row i of the truth table. In minterm i, a particular variable appears inverted ( 
if the corresponding bit in the binary representation of i is 0; otherwise, it is not  

Table 6 
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inverted. For example, row 5 has binary representation 101 and the corresponding 

minterm is XYZ. As you might expect, the correspondence for maxterms is just 

the opposite: in maxterm i, a variable appears inverted if the corresponding bit in 

the binary representation of i is 1. Thus, maxterm 5 (101) is XY Z. 

Based on the correspondence between the truth table and minterms, we 

can easily create an algebraic representation of a logic function from its 

truth table. The canonical sum of a logic function is a sum of the 

minterms corresponding to truth-table rows (input combinations) for 

which the function produces a 1 output. For example, the canonical sum 

for the logic function in Table 5 is 

F = X,Y,Z(0,3,4,6,7) = XYZ + XYZ + XYZ + XYZ+ XYZ 

Here, the notation X,Y,Z(0,3,4,6,7) is a minterm list and means “the sum 
of minterms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list 

is also known as the on-set for the logic function. You can visualize that 

each minterm turns on the output for exactly one input combination. Any 

logic function can be written as a canonical sum. 
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The canonical product of a logic function is a product of the maxterms 

corresponding to input combinations for which the function produces a 0 

output. For example, the canonical product for the logic function in Table 5 is 

F = X,Y,Z(1,2,5) = (X + Y Z( X + Y Z)( X + Y Z) 

Here, the notation X,Y,Z(1,2,5) is a maxterm list and means “the product 
of maxterms 1, 2, and 5 with variables X, Y, and Z.” The maxterm list is 

also known as the off-set for the logic function. You can visualize that each 

maxterm turns off the output for exactly one input combination. Any logic 

function can be written as a canonical product. 

It’s easy to convert between a minterm list and a maxterm list. For 
a function of n variables, the possible minterm and maxterm numbers 

are in the set {0, 1, ...., 2n-1}; a minterm or maxterm list contains a subset 

of these numbers. To switch between list types, take the set complement, 

for example, 

A,B,C(0,1,2,3)  =  A,B,C(4,5,6,7) 

    X,Y(1)  =   X,Y(0,2,3) 

  W,X,Y,Z(0,1,2,3,5,7,11,13)  =   W,X,Y,Z(4,6,8,9,10,12,14,15) 
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We have now learned five possible representations for a logic function: 

1. A truth table. 

2. An algebraic sum of minterms, the canonical sum. 

3. A minterm list using the S notation. 

4. An algebraic product of maxterms, the canonical product. 

5. A maxterm list using the P notation. 

Each one of these representations specifies exactly the same information; 

given any one of them, we can derive the other four. 

More often, we describe a logic function using the English-language connectives 

“and,” “or,” and “not.” For example, we might describe an alarm circuit by saying, 

“The ALARM output is 1 if the PANIC input is 1, or if the ENABLE input is 1, the 

EXITING input is 0, and the house is not secure; the house is secure if the WINDOW, 

DOOR, and GARAGE inputs are all 1.” Such a description can be translated directly 

into algebraic expressions: 

 

     ALARM  =PANIC +ENABLE EXITING SECURE
  SECURE  =WINDOW DOOR GARAGE 

     ALARM  =PANIC +ENABLE EXITING (WINDOW DOOR GARAGE) 
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We can easily draw a circuit using AND, OR, and NOT gates that realizes 
the final expression, as shown in figure below. 
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Logic Circuit Analysis 

We analyze a logic circuit by obtaining a formal description of its logic 
function. Once we have a description of the logic function, a number of 

other operations are possible: 

 We can determine the behavior of the circuit for various input 

combinations. 

 We can manipulate an algebraic description to suggest different circuit 
structures for the logic function. 

 We can use an algebraic description of the circuit’s functional behavior 

in the analysis of a larger system that includes the circuit. 

Given a logic diagram for a circuit, such as in the shown figure, there are 
a number of ways to obtain a formal description of the circuit’s function. 
The most primitive functional description is the truth table. 
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Using only the basic axioms of Boolean algebra, we can obtain the truth table 
of an n-input circuit by working our way through all 2n input combinations. 

For each input combination, we determine all of the gate outputs produced by 

that input, propagating information from the circuit inputs to the circuit 

outputs. The figure below applies this “exhaustive” technique to our example 
circuit. Written on each signal line in the circuit is a sequence of eight logic 
values.  

The truth table can be written by transcribing 

the output sequence of the final OR gate, as 

shown in the next table. Once we have the 

truth table for the circuit, we can also 

directly write a logic expression—the 

canonical sum or product—if we wish. 

Row X Y Z F 

0 0 0 0 0 

1 0 0 1 1 

2 0 1 0 1 

3 0 1 1 0 

4 1 0 0 0 

5 1 0 1 1 

6 1 1 0 0 

7 1 1 1 1 
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The number of input combinations of a logic circuit grows exponentially with 

the number of inputs, 2n, so the exhaustive approach can quickly become 

exhausting. Instead, we normally use an algebraic approach whose complexity 

is more linearly proportional to the size of the circuit. The method is simple—
we build up a parenthesized logic expression corresponding to the logic 

operators and structure of the circuit. We start at the circuit inputs and 

propagate expressions through gates toward the output. Using the theorems 

of Boolean algebra, we may simplify the expressions as we go, or we may defer 

all algebraic manipulations until an output expression is obtained.  

F = ((X + Y)Z) + (XYZ) 

The figure above applies the algebraic technique to our example circuit. 
The output function is given on the output of the final OR gate: 
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No Boolean-algebra theorems were used in obtaining this expression. 

However, we can use theorems to transform this expression into another 

form. For example, a sum of products can be obtained by “multiplying 

out” (using theorem  T8) : 
F = XZ + YZ + XYZ 

The new expression corresponds to a different circuit for the same logic 
function, as shown in figure below. 

Similarly, we can “add out” (using theorem  T8) the original expression to obtain a 

product of sums: 

F = ((X + Y)Z) + (XYZ) 
   = (X + Y + X)(X + Y + Y)(X + Y + Z)(Z + X)(Z + Y)(Z + Z) 
   = 1  1  (X + Y + Z)(X + Z)(Y + Z)  1 
   = (X + Y + Z)(X + Z)(Y + Z) 
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The corresponding logic circuit is shown in figure below. Note that the circuits 
that synthesized from sum of product logic expressions are often called 

AND-OR circuits, while those which are synthesized from product of sum 

logic expressions are called OR-AND circuits. 


