CHAPTER FOUR

LADDER PROGRAMMING

This chapter is an introduction to programming a PLC using ladder diagrams.

Ladder Diagrams

As an introduction to ladder diagrams, consider
the simple wiring diagram for an electrical
circuit in the figure.

We can redraw this diagram in a different way,
using two vertical lines to represent the input
power rails and stringing the rest of the circuit
between them. The result is a circuit termed
ladder diagram.

Switch
L1 Jg 0 0 | Motor
o~
dc. input | Mx'
-~ h"\-\.
B
L1 L
— 7
L. { M)
M
Switch Motor

i
",

A Y
Power rails i

The power lines, or rails, as they are often called, are like the vertical sides
of a ladder, with the horizontal circuit lines similar to the rungs of the

ladder.

PLC Ladder Programming (LAD)

A very commonly used method of programming PLCs is based on the use
of ladder diagrams.

In drawing a ladder diagram, certain conventions are adopted:

The vertical lines of the diagram represent the power rails between which
circuits are connected. The power flow is taken to be from the left-
hand vertical across a rung.

Power flow
Each rung on the ladder defines one Loft power ——» Right power
operation in the control process. ff“"' Rung 1
A ladder diagram is read from left to right A//// —»
and from top to bottom. The figure shows ‘////f Aung 2
the scanning motion employed by the PLC. ——> Rung3
When the PLC is in its run mode, it goes 4// >
through the entire ladder program to the end, Rung 4
the end rung of the program might be
indicated by a block with the word END or END End rung

RET to return the program to its beginning.

Each rung must start with an input or inputs and must end with at l¢ast
one output.

As the program is scanned, the outputs are not updated instantly, but the
results stored in memory and all the outputs are updated simultan-
eously at the end of the program scan.

Electrical devices are shown in their normal condition. Thus a switch that
1s normally open until some object closes it is shown as open on the ladder
diagram.

A particular device can appear in more than one rung of a ladder.
For example, we might have a relay that switches on one or more devices.
The same letters and/or numbers are used to label the device in each
situation.

The figure shows standard IEC 1131-3 symbols that are used for input
and output devices. |

A horizontal link along which | Mormally open contact
power can flow

Left-hand power connection ;,f |
of a ladder rung |

‘ Mormally closed contact

| 0
Interconnection of horizontal v
and vertical power flows Right-hand power connection Qutput coil: if the power flow

of a ladder rung to it is on then the coil state is on

To 1llustrate the drawing of the rung of a ladder diagram, consider a situation
where energizing an output device, such as a motor, depends on a normally
open start switch. When the switch is closed, that is, there is an input, the
output of the motor is activated.

‘ Input Output Input

e
| | '.\ Output

(a)

With a normally closed switch |/| there will be an output until that switch
was opened. The output will be off when the input 1s activated.

| input Qutput Input

() om

In drawing ladder diagrams, the names of the associated variable and
addresses of each element are appended to its symbol. Thus the next figure
shows how the ladder diagram of previous example would appear using (a)
Mitsubishi, (b) Siemens, (c) Allen-Bradley, and (d) Telemecanique
notations for the addresses.

Input DL.tpL.t Input DL.tth
‘ X400 430 \ ‘ 10.0 2.0 \
Input Output Input Output

1:001/01 r::'mmm 10,0 00,0
| | .
_

Notation: (a) Mitsubishi, (b) Siemens, (c) Allen-Bradley, and (d) Telemecanique.

Logic Functions

There are many control situations requiring actions to be initiated when

a certain combination of conditions 1s realized.
A B
1- AND o .

An output is not energized unless two normally

open switches A and B are both closed. -
Applied voltage

American

A . . .
_Dﬁpu R Electrical circuit
inputs
8 Output Input A Input B Qutput

A B
Int tional
An erna 1onaﬂI - g ? g ‘ | | | | {
— UL
Inputs o & g 1 , 0 ‘ | | | | ll\\
e 1 1 1
Logic gate symbol Truth table Ladder diagram

“On a ladder diagram, contacts in a horizontal rung, that is,
contacts in series, represent the logical AND operations.”

2- OR

An output is energized when switch A, B or, both are closed.

A
o o

i

—0
Applied voltage

Electrical circuit

A
Output
Inputs
B

E— Output
Inputs =1

Logic gate symbol

Input A Output
|| ()
|| .

Input B

Ladder diagram

Inputs
A B Output
0 0 0
0 1 1
1 0 1
1 1 1
Truth table

“Paths in parallel, represent logical OR operations.”

3- NOT

There 1s an output when there 1s no input and no output when there is an
input. The gate 1s sometimes referred to as an inverter.

A | A Qutput
Input
input
¢ P A Output
°° A O 0 1
. tput
Applied voltage H
L 1 0
Input
Electrical circuit
Truth table

Logic gate symbol

Input A Qutput
| N
— /I

Ladder diagram

4- NAND

NAND gate 1s an AND gate followed by a NOT gate. The consequence of
having the NOT gate 1is to invert all the outputs from the AND gate. Either
input A or input B (or both) have to be 0 for there to be a 1 output.
When both inputs A and input B are 1, the output 1s 0.

A
Inputs
. B
Logic gate
symbol
A
Inputs
B

}t

Output
& o

Truth table

Inputs

A

v e]

Output

= D> = D
[y =i =3 4

An alternative that gives exactly the same result is to put a NOT gate on
each input and then follow that with an OR gate.

A
Output
Inputs
B

A

Inputs
B

=1

Output

Input A Output
Input B

Ladder diagram

5- NOR

NOR gate 1s an OR gate followed by a NOT gate. The consequence of having
the NOT gate 1s to invert the outputs of the OR gate. There is an output
when neither input A nor input B is 1.

A Output inpus
Inputs
. — A Output
Logic gate B S

B
Symbol Truth table 0 0 1
1 Qutput 0 1 0
Inputs =1 S 1 0 0
B 1 1]

An alternative, which gives exactly the same results, is to put a NOT gate
on each input and then an AND gate.

Dﬂpu Input A Input B Qutput
| A4
‘ | AN
A
Output
Inputs i & Ladder diagram
B

inputs

1

6- Exclusive OR (XOR)

The OR gate gives an output when either or both of the inputs are 1.
However, sometimes there 1s a need for a gate that gives an output when
either of the inputs is 1 but not when both are 1.

symbol

u Output
Logic gate i
58 5/ Truth table
A Output
Inputs =1 S
B

Inputs

A

vl

Output

0

— = [T

1
1
0

- o =

One way of obtaining such a gate is by using NOT, AND, and OR gates as

shown in figure.

Input A :

Input B

Ba

4D_

Output

Input

A Input B Output

Input

O

A Input B

Ladder diagram

Latching

There are often situations in which it is necessary to hold an output
energized, even when the input ceases. The term latch circuit is used
for the circuit that carries out such an operation.

An example of a latch circuit is shown in figure. When the input A contacts
close, there 1s an output. However, when there 1s an output, another set of
contacts associated with the output closes. These contacts form an OR
logic gate system with the input contacts. Thus, even if input A opens, the
circuit will still maintain the output energized. The only way to release the
output is by operating the normally closed contact B.

Input A Input B Output

Ho 3‘

o

As an 1llustration of the application of a
latching circuit, consider a motor
controlled by stop and start push-button
switches and for which one signal light
must be illuminated when the power is
applied to the motor and another when
it is not applied.

X401 1s closed when the program is started.
When X400 1s momentarily closed, Y430 1s
energized and its contacts close. This results
in latching as well as the switching off of
Y431 and the switchingon of Y432. To
switch the motor off, X401 1s pressed and
opens. Y430 contacts open in the top rung
and third rung but close in the second rung.
Thus Y431 comes on and Y432 goes off

| ()

Start Stop Motor output
X400 X401 Y430
|| I /I s
|| AN
Output
contacts
Y430
||
|
Lamp for power
Output contacts not applied
Y430 Y431
M 4)
| .
Lamp for power
Output contacts applied
Y430 Yd32

Multiple Outputs

With ladder diagrams, there can be more than one output connected to a
contact. The figure shows a ladder program with two output coils. When the
input contacts close, both the coils give outputs.

Input Output A

|| [
| “\j*'_

Output B
-
f
RN }_

For the ladder rung shown in the figure, output A occurs when input A
occurs. Output B occurs only when both input A and input B occur.

Input A Output A
{—-
Qutput B

-

Input B

Example

A signal lamp is required to be switched on if a pump is running and the
pressure is satisfactory, or if the lamp test switch is closed.

Pump Pressure Lamp

X400 X401 Y430 Pump
| | | | ‘f)7 Pressure & |
| | | | l\, Test »>1 —
Test
Tdﬂl‘? Pump
| | Pressure
END Test

Other Programming Languages

Other languages that are less popular include instruction list (IL),
sequential function chart (SFC), and structured text (ST).

Start
Pump Pressure Lamp IN 1 OUT 1
X400 X401 Y430
|| - LD X400 T N7 |)
| . :)— AND X401 | | L
LD X402 Step 0 OUT 1
X402 NRB
QUT Y430
END + N2
ouUT1 IN2 OUTZ2
Test
— suor ootz | L1)
. . . T IN 3
instruction list (IL), END
End
sequential function chart (SFC),
Sensor 1 Sensor 2 Valve 1 Valve_1:= (Sensor_1 AND NOT Sensor_2)
| | M Il/’ COR Sensor_3
structured text | | |]\ : IF Sensor_1 AND NOT Sensor_2 THEN
(ST). Sensor 3 Valve_1:= 1;
| | BLSEIF Sensor_3 THEN
Valve_1:=1

END_IF

Boolean Algebra

Ladder programs can be derived from Boolean expressions since we are
concerned with a mathematical system of logic.

In Boolean algebra there are just two digits, 0 and 1. When we have an
AND operation for inputs A and B, we can write:

A'B=0Q
The OR operation for inputs A and B is written as:
A+-B=0Q
The NOT operation for an input A 1s written as:
A=0Q

As an 1llustration of how we can relate Boolean expressions with ladder
diagrams, consider the expression:

A+BC=0Q

The figure shows the ladder diagram and the correspondinglogic circuit.

Input A Qutput Q Input A

-
_ Input B > 1 Output Q

Input B Input C Input C| &

Qutput Q

Consider a logic diagram with many inputs, as shown in figure below.

Input A
Input B
Input C

Input D

Output Q

Input E

Input F

Its representation by a Boolean expression and a ladder rung.

(A‘B + C)'D'E'F = Q

HHHH HAO-

Axioms

The axioms (or postulates) of a mathematical system are a minimal set of
basic definitions that we assume to be true, from which all other
information about the system can be derived. The next table lists the
Boolean algebra axioms.

Table 1
A1) 1+1=1 (A1) 0-0=0
(A2) 0+0=0 A2) 1-1=1

(A3) 1+0=0+1=1 (A3) 0-1=1-0=0

Single-variable Theorems

During the analysis or synthesis of logic circuits, we often write algebraic
expressions that characterize a circuit’s actual or desired behavior. Boolean
algebra theorems are statements that allow us to manipulate algebraic
expressions to get simpler ones. For example, the theorem X+ 0 =X
allows us to substitute every occurrence of X + 0 in an expression with X.
The next table lists Boolean algebra theorems involving a single variable
X. Try to prove it yourself.

Table 2

(T1)
(T2)
(T3)
(T4)
(T5)

X+0=X (T1) X-1=X
X+1=1 (T2) X-0=0
X+ X=X (T3) X-X=X
X+X =1 (T4) X-X'=0
X) =X

Two- And Three Variable Theorems

Boolean algebra theorems with two or three variables are listed in the next
table. Each of these theorems is easily proved by evaluating the theorem
statement for the four possible combinations of X and Y, or the eight
possible combinations of X, Y, and Z.

Table 3

Commutative Laws
Associative Laws
Distributive Laws
DeMorgan's Laws
Absorption Laws

Combining

(T6)
(T7)
(T8)
(T9)

(T10) X+X-Y=X
(T11) X-Y+X .Y =X

A+B=B+A (Te")
A+B+CO)=A+B+C (T7)
A-B+C)=A-B+A-C (T8)
(A+B) =A"-B (T9")

A-B=B-A
A-B-C)=A-B)-C
A+B-C=(A+B)-(A+0)
(A-B))=A"+B

(T10") X-(X+Y) =X
(T11) X+Y) - X+Y)=X

The first two theorem pairs (T6, T6') and (T7, T7') concern commutativity
and associativity of logical addition and multiplication and are identical to
the commutative and associative laws for addition and multiplication of
integers and reals. Taken together, they indicate that the parenthesization
or order of terms 1n a logical sum or logical product is irrelevant.

Theorem T8 i1s 1dentical to the distributive law for integers and reals—that
18, logical multiplication distributes over logical addition. Hence, we can
“multiply out” an expression to obtain a sum-of-products form, as in the
example below:

VW+X)(Y+7Z)=VWY+VWZ+VXY+ VXZ

However, Boolean algebra also has the unfamiliar property that the reverse
1s true—logical addition distributes over logical multiplication as
demonstrated by theorem T8'. Thus, we can also “add out” an expression to
obtain a product of-sums form:

VWX +X-2)=(V+Y)V+2)-W+Y)W+2)X+Y)X+7Z)

DeMorgan’s Laws (T9 and T9’) are probably the most commonly used of
all the theorems of Boolean algebra. These theorems apply to any number
of inputs. Theorem T9' simply says that an n-input AND gate whose
output is inverted is equivalent to an n-input OR gate whose inputs are
inverted. That 1s, the circuits of the figure (a) and (b) or (¢) and (d) are
equivalert

X — XY i ’ X —| o
@ Y_D—Do—ux Y) © Y_Do—Z-(X)
Equivalent to \L Equivalent to \l/
"
X >c X
(b) v J>~Z=X’+Y’ (d) :D—kxwv'
>C 1 Y
y

Equivalentcircuits according to DeMorgan’s theoremT9'.

Theorems (T10, T10’) and (T11, T11") are used extensively in the minimi-
zation of logic functions. For example, if the subexpression X + XY
appears 1n a logic expression, the absorption theorem T10 says that we
need only include X in the expression.

Order Of Operation

The order of priority in Boolean expression is NOT first, AND second, and
OR last, unless otherwise indicated by grouping signs, such as parentheses,

brackets, or braces. According to these rules, in the expression A+ B - C, B
1s ANDed with C first then the result is ORed with A.

Duality

We stated all of the axioms of Boolean algebra in pairs (e.g., (A1) and (A1’)).
The primed version (') of each axiom is obtained from the unprimed version
by simply swapping (0) and (1) and, if present, (-) and (+). As a result, we can
state the following metatheorem, a theorem about theorems:

Principle of Duality Any theorem in Boolean algebra remains true if
(0) and (1) are swapped and (-) and (+) are swapped throughout.

The foregoing axioms and theorems of the Boolean algebra are used in
analysis and synthesis of digital circuits. It can be also used to simplify the
logic expressions. The following example illustrates this:

Examples

Simplify the following Boolean functions to a minimum number of literals.

1. Z=X+XY
Ans.

Z=X1+XY
=X-(1+Y)
=X-1
=X

2. Z=XX"+Y)
Ans.
Z=XX+XY
=0+XY
=XY

3. W=XYZ+XYZ+XY
Ans.
W=X"Z7Z(Y +Y) +XY
=X'"7Z+ XY

4. W=XY+XZ+YZ
Ans.

W=XY+X'Z+YZX+X)
=XY+XZ+XYZ+X-YZ
=XY1Q+72)+X'Z-1+Y)
=XY+X'Z

5. Z=X+XY

Ans.
Z=X+X)(X+Y)
=1.X+Y)
=X+Y

Standard Representations of Logic Functions

1. Truth table

The most basic representation of a logic function is the truth table. This
representation simply lists the output of the circuit for every possible
input combination. Traditionally, the input combinations are arranged in
rows in ascending binary counting order, and the corresponding output
values are written in a column next to the rows. The general structure of a
3-variable truth table is shown in table below.

Row X Y Z F
0 0 0 0 F(0,0,0)
1 0 0 1 F@0,0,1)
2 O 1 0 F(0,1,0)
3 O 1 1 F@O,1,1)
4 1 0 0 F(1,0,0
5 1 0 1 F(@,0,1)
6 1 1 0 F(1,1,0)
7 1 1 1 Fa,1,1)

Table 4 General truth table structure
for a 3-variblelogic function, F(X,Y,Z)

The rows are numbered 0—7

i :) Row X Y Z F
corresponding to the binary input 0 0 0 0 1
combinations, but this numbering is not 1 0 0 1 0
an essential part of the truth table. The 9 0 1 0 0
truth table for a particular 3-variable 3 0 1 1 1
logic function is shown in table 5. Each

P : 4 1 0 O 1
distinct pattern of Os and 1s in the
)) i 5) 1 0 1 0
output column yields a different logic
. 6 1 1 O 1
function; there are 28 such patterns. . L1 1)
Thus, the logic function shown in the
table is one of 28 different logic Table 5 Truth table for a particular
functions of three variables. 3-variblelogic function, F(X,Y,Z)

The truth table for an n-variable logic function has 2” rows. Obviously,
truth tables are practical to write only for logic functions with a small
number of variables.

The information contained in a truth table can also be conveyed
algebraically. To do so, we first need some definitions:

e Aliteralis a variable or the complement of a variable. Examples: X, Y, X', Y.

e A product term is a single literal or a logical product of two or more literals.
Examples: Z', W-X-Y, XY"-Z, W'-Y'"-Z.

A sum-of-products expression is a logical sum of product terms. Example:
Z'+W-XY + XY"Z+W'Y"Z

A sum term is a single literal or a logical sum of two or more literals. Examples: Z',
W+X+Y, X+Y +Z W +Y' +Z.

A product-of-sums expression is a logical product of sum terms. Example:
LW+ X+Y)X+Y' +2)- W +Y'+ 2).

A normal term is a product or sum term in which no variable appears more than
once. A nonnormal term can always be simplified to a constant or a normal term

using one of Boolean algebra theorems. Examples of nonnormal terms: W-X-X.Y’,
W+ W+ X +Y, X-X-Y. Examples of normal terms: W-X-Y', W + X' +.

An n-variable minterm is a normal product term with n literals. There are 2" such
product terms. Examples of 4-variable minterms: W'-X'-Y".Z', W-X-Y'-Z, W'-X".Y-Z'.

An n-variable maxterm is a normal sum term with n literals. There are 2" such sum
terms. Examples of 4-variable maxterms: W + X' +Y' + Z/, W+ X' +Y' + Z, W' +
X +Y+2Z'.

There 1s a close correspondence between the truth table and minterms and
maxterms. A minterm can be defined as a product term that is 1 in exactly
one row of the truth table. Similarly, a maxterm can be defined as a sum
term that 1s 0 in exactly one row of the truth table. The next table shows
this correspondence for a 3-variable truth table.

Table 6
Row X Y [Z F Minterm Maxterm
0 O 0 O F(0,0,0) X'.Y'Z' X+Y+Z
1 O 0 1 F(0,0,1) X-Y"Z X+Y+2Z
2 0O 1 O F(0,1,0) X.Y-Z' X+Y' +Z
3 o 1 1 F(0,1,1) X-Y-Z X+Y +2Z
4 1 0 O F(1,0,0) XY'Z' X+Y+Z
5 1 0 1 F(1,0,1) XY'Z X+Y+2Z
6 1 1 0 F(1,1,0) XY-Z X+Y+Z
7 1 1 1 F(1,1,1) XY-Z X+Y'+2Z

An n-variable minterm can be represented by an n-bit integer, the minterm
number. We'll use the name minterm i to denote the minterm corresponding to
row 1 of the truth table. In minterm 1, a particular variable appears inverted (')
if the corresponding bit in the binary representation of 1 is 0; otherwise, it is not

inverted. For example, row 5 has binary representation 101 and the corresponding
minterm is X-Y'-Z. As you might expect, the correspondence for maxterms is just
the opposite: in maxterm 1, a variable appears inverted if the corresponding bit in

the binary representation of i is 1. Thus, maxterm 5 (101) is X'+ Y + Z'.

Based on the correspondence between the truth table and minterms, we
can easily create an algebraic representation of a logic function from its
truth table. The canonical sum of a logic function is a sum of the
minterms corresponding to truth-table rows (input combinations) for
which the function produces a 1 output. For example, the canonical sum
for the logic function in Table 5 is

F=Yyy20,3,4,6,7) = X-Y'-Z' + X'"Y-Z+ X-Y-Z' + X-Y-Z' + X-Y-Z

Here, the notation 2 xv;(0,3,4,6,7) 1s a minterm list and means “the sum
of minterms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list
1s also known as the on-set for the logic function. You can visualize that
each minterm turns on the output for exactly one input combination. Any
logic function can be written as a canonical sum.

The canonical product of a logic function is a product of the maxterms
corresponding to input combinations for which the function produces a 0
output. For example, the canonical product for the logic function in Table 5 1s

F=]lxvz(1.25) = (X+Y+Z)(X+Y +Z)(X +Y+2Z)

Here, the notation [Ixv7(1,2,5) 1s a maxterm list and means “the product
of maxterms 1, 2, and 5 with variables X, Y, and Z.” The maxterm list is
also known as the off-set for the logic function. You can visualize that each
maxterm turns off the output for exactly one input combination. Any logic
function can be written as a canonical product.

It’s easy to convert between a minterm list and a maxterm list. For
a function of n variables, the possible minterm and maxterm numbers
are in the set {0, 1,, 2»1}; a minterm or maxterm list contains a subset
of these numbers. To switch between list types, take the set complement,
for example,

ZA,B,C(O’1 ’2’3) = HA,B,C(4’5’6’7)
Z‘4X,Y(1) = HX,Y(O’Z’B)
ZW,X,Y,Z(011’21315;7511713) = HW,X,Y,Z(4,6,8,9,10,12,14,15)

We have now learned five possible representations for a logic function:

1. A truth table.

2. An algebraic sum of minterms, the canonical sum.

3. A minterm list using the S notation.

4. An algebraic product of maxterms, the canonical product.
5. A maxterm list using the P notation.

Each one of these representations specifies exactly the same information;
given any one of them, we can derive the other four.

More often, we describe a logic function using the English-language connectives
“and,” “or,” and “not.” For example, we might describe an alarm circuit by saying,
“The ALARM output is 1 if the PANIC input is 1, or if the ENABLE input is 1, the
EXITING input is 0, and the house is not secure; the house is secure if the WINDOW,
DOOR, and GARAGE inputs are all 1.” Such a description can be translated directly
into algebraic expressions:

ALARM = PANIC + ENABLE - EXITING' - SECURE'
SECURE = WINDOW - DOOR - GARAGE
ALARM = PANIC + ENABLE - EXITING’ - (WINDOW - DOOR - GARAGE)'

We can easily draw a circuit using AND, OR, and NOT gates that realizes
the final expression, as shown in figure below.

PANIC
ENABLE

EXITING >C |_:>—

WINDOW

ECURE
DOOR ———)&
GARAGE

ALARM

Logic Circuit Analysis

We analyze a logic circuit by obtaining a formal description of its logic
function. Once we have a description of the logic function, a number of
other operations are possible:

e We can determine the behavior of the circuit for various input
combinations.

e We can manipulate an algebraic description to suggest different circuit
structures for the logic function.

e We can use an algebraic description of the circuit’s functional behavior
in the analysis of a larger system that includes the circuit.

Given a logic diagram for a circuit, such as in the shown figure, there are
a number of ways to obtain a formal description of the circuit’s function.
The most primitive functional description is the truth table.

| ;C:DT}
e DR

>

Using only the basic axioms of Boolean algebra, we can obtain the truth table
of an n-input circuit by working our way through all 2”7 input combinations.
For each input combination, we determine all of the gate outputs produced by
that input, propagating information from the circuit inputs to the circuit
outputs. The figure below applies this “exhaustive” technique to our example
circuit. Written on each signal line in the circuitis a sequence of eight logic
values. « 00001111

L QO0OTTIT N 11001111
v 00110011 {>0 11001100
L 01000101

7 01010101 01010101

01100101
>O 11110000
— F
00110011) 00100000
>0 10101010
Row X Y Z F

0 0 0 0 0
The truth table can be written by transcribing 1 0 o 1
the output sequence of the final OR gate, as , 4 1
shown in the next table. Once we have the
truth table for the circuit, we can also > oot °
4 1 0 0 0

directly write a logic expression—the
canonical sum or product—if we wish. S oo !

The number of input combinations of a logic circuit grows exponentially with
the number of inputs, 2, so the exhaustive approach can quickly become
exhausting. Instead, we normally use an algebraic approach whose complexity
1s more linearly proportional to the size of the circuit. The method 1s simple—
we build up a parenthesized logic expression corresponding to the logic
operators and structure of the circuit. We start at the circuit inputs and
propagate expressions through gates toward the output. Using the theorems
of Boolean algebra, we may simplify the expressions as we go, or we may defer
all algebraic manipulations until an output expression is obtained.

X
|Y,4 X+Y
Y X+Y')-Z
4
D F=(X+Y)-2Z)+(XY+Z)

ot
o

The figure above applies the algebraic technique to our example circuit.
The output function is given on the output of the final OR gate:

R

F=((X+Y)Z)+ (X'Y-Z)

No Boolean-algebra theorems were used in obtaining this expression.
However, we can use theorems to transform this expression into another
form. For example, a sum of products can be obtained by “multiplying
out” (using theorem T8) :

F=XZ+Y"Z+X.Y.Z

The new expression corresponds to a different circuit for the same logic
function, as shown in figure below.

X \ X-Z
J
Y 7
>O L \ Y .7 —r\ F=X-Z+Y -Z+X-Y-Z
J —h
>0
T\ XYz
Z >O £ | J

Similarly, we can “add out” (using theorem T8') the original expression to obtain a
product of sums:
F=((X+Y")2)+ (X-Y-Z)
=(X+Y +X)X+Y' +Y)X+Y' +2Z2")(Z+X)(Z+Y)(Z+2Z)
1. 1. X+Y' +Z2)X +2)(Y+2)-1
(X+Y' +2Z)(X +2Z2)(Y +2)

The corresponding logic circuitis shown in figure below. Note that the circuits
that synthesized from sum of product logic expressions are often called
AND-OR circuits, while those which are synthesized from product of sum
logic expressions are called OR-AND circuits.

X
X+Y' +2
X+Z \ F=X+Y+2Z)- (X +2)-(Y+2)
Y Y+Z2
Z

