Egyptian Russian University		Faculty of Engineering
Mechatronics & Robotics	FRU	Course Title:
Dept.	EKU	Computer Programing and
		Introduction to AI
Max time: 60 min	Mid Term Exam. – V2	Course Code: BSN 106
	Fall 2025-2026	Dr. Omar Abdelaziz

Question 1 (5 marks)

- Write a Python program that takes an even number "n" of inputs from the user.
 - Add the first half of the inputs to a list called desired_path.
 - Add the second half of the inputs to a list called measured_path.
 - Make code to calculate the Mean Squared Error (MSE) between the two lists.
- Formula: $MSE = \frac{1}{(n/2)} \sum_{i=0}^{(n/2)-1} (desired_path[i] measured_path[i])^2$
- Print both lists and the final MSE value.

Test Example: If n = 6

 $desired_path = [1.0, 2.0, 3.0],$ $measured_path = [1.1, 1.9, 3.0]$ Enter value: 1.0
Enter value: 2.0
Enter value: 3.0
Enter value: 1.1
Enter value: 1.9
Enter value: 3.0

• Results \rightarrow MSE = $((1.0 - 1.1)^2 + (2.0 - 1.9)^2 + (3.0 - 3.0)^2)/3 = 0.00666$

Question 2 (3 marks)

• Make a list named voltages that contains elements from -5.0 to +5.0 (inclusive) with a step of 0.1. Print the list.

results \rightarrow : [-5.0, -4.9, -4.8, ..., 4.9, 5.0]

Question 3 (5 marks)

In mechatronics, actuators have limits. Make a function saturate_actuator that takes a list of motor commands, a min val, and a max val.

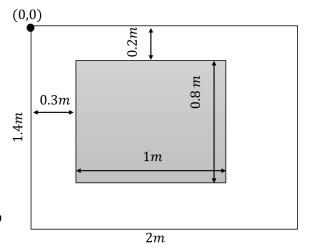
- The function must return a new list where:
 - Any value below min_val is set to min_val.
 - Any value above max_val is set to max_val.
 - Values within the range are unchanged.
 - Print the new saturated list.

Test Example:

- commands = [-20, 300, 120, 256, 0], min_val = 0, max_val = 255
- Result \rightarrow : [0, 255, 120, 255, 0]

.....

Question 4 (7 marks)


- Make a function to build an occupancy map that takes inputs
 - map width and map height
 - list for the square object has four items as follows: obj_list=[h0,h,w0,w]
 - 1. object initial height (h0)
 - 2. object height (h)
 - 3. object initial width (w0)
 - 4. object width (w)
 - map resolution/pixel accuracy (acur)
- the function should print the following
 - Number of rows/ grid Height
 - Number of columns / grid width
 - occupancy grid/map occ_grid (a list of lists)

Test Example:

shown map is $(1.4 \text{ m} \times 2 \text{ m}, 10 \text{ cm resolution})$ showing the objects in gray (ones) and free areas in white (zeros).

- Knowing Pixel accuracy (resolution): 0.1 m (10 cm):
- object initial height(h0)=0.2m,
- object height (h)=0.8m,
- object initial width (w0)=0.3m,
- object width(w)=1m

(notice you need to check the results from any float division for example sometimes 1.9/0.1 give you 18.9999 use math.ceil(1.9/0.1) gives 19, you need to (import math) in the beginning of the code

results

- Number of rows = 14,
- Number of columns =20
- for row in occ_grid: print(row) [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]