Python Programming Lab Exercise 1: Student Grading System

Department of Mechatronics Engineering

October 13, 2025

1 Objectives

The objective of this exercise is to integrate and apply all the concepts learned in:

- Lab 01: Variables, Data Types, Input/Output, Arithmetic Operators, Comments.
- Lab 02: Conditional Statements, Logical Operators, Lists, Loops.

Students will design and implement a complete Python program that:

- Accepts multiple student records.
- Calculates total and average marks.
- Determines the grade based on predefined criteria.
- Computes class statistics.

2 Problem Description

You are required to write a Python program to build a simple **Student Grading System** for a small class.

Problem Requirements

Step 1: Ask the user to input the number of students.

Step 2: For each student:

- Read the **name** of the student.
- Read five subject marks (out of 100).

Step 3: Store the marks in a list.

Step 4: Calculate:

- Total marks.
- Average mark.
- Grade according to:
 - A: average ≥ 90
 - B: $80 \le average < 90$
 - $C: 70 \le average \le 80$
 - D: $60 \le average < 70$
 - F: average < 60

Step 5: Display:

- Student name.
- Entered marks.
- Total, average, and grade.

Step 6: After all students:

- Compute class average.
- Find highest and lowest average.

Step 7: Ask the user if they want to enter another class.

3 Concepts Used

- Variables and Data Types: to store names, marks, totals, averages.
- Arithmetic Operations: total and average calculations.
- Input and Output: for interacting with the user.
- Conditional Statements: to assign letter grades.
- Logical Operators: used in grade classification.
- Lists: for storing multiple subject marks.
- Loops: to process each student and each subject.

• Built-in Functions: sum(), max(), min(), len().

4 Sample Execution

```
Enter number of students: 2
--- Student 1 ---
Enter student name: Ahmed
Enter mark for subject 1: 90
Enter mark for subject 2: 85
Enter mark for subject 3: 92
Enter mark for subject 4: 88
Enter mark for subject 5: 91
Total = 446, Average = 89.20, Grade = B
--- Student 2 ---
Enter student name: Sara
Enter mark for subject 1: 78
Enter mark for subject 2: 81
Enter mark for subject 3: 85
Enter mark for subject 4: 74
Enter mark for subject 5: 80
Total = 398, Average = 79.60, Grade = C
Class average: 84.40
Highest average: 89.20
Lowest average: 79.60
Do you want to enter another class? (yes/no): no
Goodbye!
```

5 Solution Code

```
# Input 5 marks for each student
for j in range(5):
mark = float(input(f"Enter mark for subject {j+1}: "))
marks.append(mark)
total = sum(marks)
average = total / len(marks)
# Determine grade
if average >= 90:
grade = "A"
elif average >= 80:
grade = "B"
elif average >= 70:
grade = "C"
elif average >= 60:
grade = "D"
else:
grade = "F"
print(f"Total = {total}, Average = {average:.2f}, Grade =
   {grade}")
student_names.append(name)
student_averages.append(average)
# Class statistics
class_average = sum(student_averages) / len(
   student_averages)
highest = max(student_averages)
lowest = min(student_averages)
print("\n======="")
print(f"Class average: {class_average:.2f}")
print(f"Highest average: {highest:.2f}")
print(f"Lowest average: {lowest:.2f}")
print("======="")
again = input("Do you want to enter another class? (yes/
  no): ").lower()
if again != "yes":
print("Goodbye!")
break
```

6 Remarks and Extensions

- You can extend this program to:
 - Save results to a file.

- Use functions to organize the code.
- Add input validation.
- Display class ranking.
- This exercise gives students the first experience of integrating multiple Python programming elements into a structured program.