
Python Programming Lab
Exercise 1: Student Grading System

Department of Mechatronics Engineering

October 13, 2025

1 Objectives

The objective of this exercise is to integrate and apply all the concepts learned in:

� Lab 01: Variables, Data Types, Input/Output, Arithmetic Operators, Comments.

� Lab 02: Conditional Statements, Logical Operators, Lists, Loops.

Students will design and implement a complete Python program that:

� Accepts multiple student records.

� Calculates total and average marks.

� Determines the grade based on predefined criteria.

� Computes class statistics.

2 Problem Description

You are required to write a Python program to build a simple Student Grading System
for a small class.

1

Python Programming Lab Exercise 1

Problem Requirements

Step 1: Ask the user to input the number of students.

Step 2: For each student:

� Read the name of the student.

� Read five subject marks (out of 100).

Step 3: Store the marks in a list.

Step 4: Calculate:

� Total marks.

� Average mark.

� Grade according to:

– A: average ≥ 90

– B: 80 ≤ average < 90

– C: 70 ≤ average < 80

– D: 60 ≤ average < 70

– F: average < 60

Step 5: Display:

� Student name.

� Entered marks.

� Total, average, and grade.

Step 6: After all students:

� Compute class average.

� Find highest and lowest average.

Step 7: Ask the user if they want to enter another class.

3 Concepts Used

� Variables and Data Types: to store names, marks, totals, averages.

� Arithmetic Operations: total and average calculations.

� Input and Output: for interacting with the user.

� Conditional Statements: to assign letter grades.

� Logical Operators: used in grade classification.

� Lists: for storing multiple subject marks.

� Loops: to process each student and each subject.

2

Python Programming Lab Exercise 1

� Built-in Functions: sum(), max(), min(), len().

4 Sample Execution

Enter number of students: 2

--- Student 1 ---

Enter student name: Ahmed

Enter mark for subject 1: 90

Enter mark for subject 2: 85

Enter mark for subject 3: 92

Enter mark for subject 4: 88

Enter mark for subject 5: 91

Total = 446, Average = 89.20 , Grade = B

--- Student 2 ---

Enter student name: Sara

Enter mark for subject 1: 78

Enter mark for subject 2: 81

Enter mark for subject 3: 85

Enter mark for subject 4: 74

Enter mark for subject 5: 80

Total = 398, Average = 79.60 , Grade = C

Class average: 84.40

Highest average: 89.20

Lowest average: 79.60

Do you want to enter another class? (yes/no): no

Goodbye!

5 Solution Code

==

Student Grading System - Final Exercise

==

while True:

num_students = int(input("Enter number of students: "))

Lists to store student data

student_names = []

student_averages = []

for i in range(num_students):

print(f"\n--- Student {i+1} ---")

name = input("Enter student name: ")

marks = []

3

Python Programming Lab Exercise 1

Input 5 marks for each student

for j in range (5):

mark = float(input(f"Enter mark for subject {j+1}: "))

marks.append(mark)

total = sum(marks)

average = total / len(marks)

Determine grade

if average >= 90:

grade = "A"

elif average >= 80:

grade = "B"

elif average >= 70:

grade = "C"

elif average >= 60:

grade = "D"

else:

grade = "F"

print(f"Total = {total}, Average = {average :.2f}, Grade =

{grade}")

student_names.append(name)

student_averages.append(average)

Class statistics

class_average = sum(student_averages) / len(

student_averages)

highest = max(student_averages)

lowest = min(student_averages)

print("\n===============================")

print(f"Class average: {class_average :.2f}")

print(f"Highest average: {highest :.2f}")

print(f"Lowest average: {lowest :.2f}")

print("===============================")

again = input("Do you want to enter another class? (yes/

no): ").lower()

if again != "yes":

print("Goodbye!")

break

6 Remarks and Extensions

� You can extend this program to:

– Save results to a file.

4

Python Programming Lab Exercise 1

– Use functions to organize the code.

– Add input validation.

– Display class ranking.

� This exercise gives students the first experience of integrating multiple Python pro-
gramming elements into a structured program.

5

	Objectives
	Problem Description
	Concepts Used
	Sample Execution
	Solution Code
	Remarks and Extensions

